

WORLD WIDE WEB

html url http

История www

1989 Тим Бернерс-Ли (CERN)

1993 Mosaic

1994 Netscape

1995 The World Wide Web Consortium

1996 IE3

1998 XML

2012 HTML5

Война браузеров

Логическая структура сайта

Портал

Сайты

Блоки

Страницы

Шаблоны

Программная структура сайта

Hypertext Transfer Protocol
$ telnet www.w3.org 80
Trying 128.30.52.37...
Connected to www.w3.org.
Escape character is '^]'.
GET /
HTTP/1.1 200 OK
Date: Sat, 18 Jan 2014 16:55:18 GMT
Server: Apache/2
Content-Location: Home.html
Vary: negotiate,accept
TCN: choice
Last-Modified: Sat, 18 Jan 2014 10:16:06 GMT
ETag: "8a5d-4f03bf2516580;89-3f26bd17a2f00"
Accept-Ranges: bytes
Content-Length: 35421
Cache-Control: max-age=600
Expires: Sat, 18 Jan 2014 17:05:18 GMT
P3P: policyref="http://www.w3.org/2001/05/P3P/p3p.xml"
Connection: close
Content-Type: text/html; charset=utf-8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/x
html1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>World Wide Web Consortium (W3C)</title>

Uniform resource locator

протокол://доменноеИмя/путь

http://www.lostfilm.tv/Static/icons/cat_arrow.jpeg
http://google.com/calendar

Разработка сайта

Языки разметки текста

 TeX, html, xml, xhtml, sgml

<ТЭГ АТРИБУТ='значение'>текст</ТЭГ>

<ТЭГ />

Разметка — добавление важности документу.
Является дополнительным текстом,
включенным в документ, некоторым образом
отделяемым от содержимого документа.

sgml

Standard Generalized Markup Language —
метаязык для определения языков
разметки документов.

● Лексика (SGML Declaration)
● Синтаксис (Document Type Definition)
● Размеченный документ

Документ sgml
<memo>
<to>Дедушке</to>
<from>Ваня</from>
<date>5 февраля 2013 г.</date>
<subject>Подарок</subject>
<text>
<para>
Пришли пожалуйста подарок!
</para>
<para>
А то я приеду к тебе в гости. И ты узнаешь!
</para>
</text>
</memo>

DTD sgml<memo>
<to>Дедушке</to>
<from>Ваня</from>
<date>5 февраля 2013 г.</date>
<subject>Подарок</subject>
<text>
<para>
Пришли пожалуйста подарок!
</para>
<para>
А то я приеду к тебе в гости.
И ты узнаешь!
</para>
</text>
</memo>

<!DOCTYPE memo [
<!ELEMENT memo O O ((to & from & date &
subject?), text) >
<!ELEMENT text - O (para+) >
<!ELEMENT para O O (#PCDATA) >
<!ELEMENT (to, from, date, subject) - O (#PCDATA) >
]>

HyperText Markup Language

<p>
HTML —
гипертекстовый язык разметки документов,
интерпретируемый и отображаемый браузерами
в виде документа в удобной для человека
форме.

Гипертекст — это форма организации
текстового материала, при которой его
единицы представлены не в линейной
последовательности, а как система явно
указанных возможных переходов, связей
между ними.

Структура документа HTML
<!ELEMENT HTML O O (HEAD, BODY)>

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
…........
</head>
<body>
…........
</body>
</html>

http://www.w3.org/TR/html4/struct/global.html#edef-HTML

Заголовок HTML
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8" />
<title>Портал муниципальных образований
Пермского края</title>
<meta name="description" content="Портал
муниципальных районов Пермского края" />
<meta name="keywords" content="Пермь, районы
пермского края, Пермский край,
администрация" />
<link href="/css/style.css" rel="stylesheet"
type="text/css" />
<script type="text/javascript" src="/js/jQuery.js" />
</head>

Разметка текста в HTML
текст <TT>пример использования 'TT' тэга</TT>
текст <I>пример использования 'I' тэга</I>

текст пример использования 'B' тэга
текст <BIG>пример использования 'BIG' тэга</BIG>
текст <SMALL>пример использования 'SMALL' тэга</SMALL>
текст пример использования 'EM' тэга
текст пример использования 'STRONG' тэга
текст <DFN>пример использования 'DFN' тэга</DFN>
текст <CODE>пример использования 'CODE' тэга</CODE>
текст <SAMP>пример использования 'SAMP' тэга</SAMP>
текст <KBD>пример использования 'KBD' тэга</KBD>
текст <VAR>пример использования 'VAR' тэга</VAR>
текст <CITE>пример использования 'CITE' тэга</CITE>
текст <ABBR>пример использования 'ABBR' тэга</ABBR>
текст <ACRONYM>пример использования 'ACRONYM' </ACRONYM>
текст _{пример использования 'SUB' тэга}
текст ^{пример использования 'SUP' тэга}

Результат разметки текста

Маркированный список HTML

Первый элемент списка
Второй элемент списка
и т.д.

Нумерованный список HTML

Первый элемент списка
Второй элемент списка
и т.д.

Таблицы HTML

<TABLE BORDER='1'>
<TR><TH>ЗАГ1</TH><TH>ЗАГ2</TH></TR>
<TR><TD>Пол1.1</TD><TD>Пол1.2</TD></TR>
<TR><TD COLSPAN='2'>Пол2.1-2</TD></TR>
<TR><TD ROWSPAN='2'>Пол3-4.1</TD>
<TD>Пол3.2</TD></TR>
<TR><TD>Пол4.2</TD></TR>
</TABLE>

Таблицы HTML отображение
<TABLE BORDER='1'>
<TR><TH>ЗАГ1</TH><TH>ЗАГ2</TH></TR>
<TR><TD>Пол1.1</TD><TD>Пол1.2</TD></TR>
<TR><TD COLSPAN='2'>Пол2.1-2</TD></TR>
<TR><TD ROWSPAN='2'>Пол3-4.1</TD>
<TD>Пол3.2</TD></TR>
<TR><TD>Пол4.2</TD></TR>
</TABLE>

Формы HTML
<form method="post" action="url обработчика">
Кому:

<input type="checkbox" value="mama@gmail.com"
name="to[0]">маме

<input type="checkbox" value="wife@yandex.ru"
name="to[1]">жене

От:<select name="from">
<option>kdb@perm.ru</option>
<option>kdenisb@mail.ru</option>
</select>
Тема: <input type="text" name="subject">

Тип:

<input type="radio" value="html" name="tip">html

<input type="radio" value="txt" name="tip">текст

<textarea name="mesbody">Привет, !</textarea>

<input type="submit" value="Послать">

Формы HTML

<input type="checkbox"
value="mama@gmail.com" name="to[0]">маме

<input type="checkbox"
value="wife@yandex.ru" name="to[1]">жене

От:<select name="from">
<option>kdb@perm.ru</option>
<option>kdenisb@mail.ru</option>
</select>
Тема: <input type="text"
name="subject">

Тип:

<input type="radio" value="html"
name="tip">html

<input type="radio" value="txt"
name="tip">текст

<textarea name="mesbody">Привет, !
</textarea>

<input type="submit" value="Послать">

div и span
Используются для дальнейшего задания стилей
(с помощью css) включенным в них элементам.

тескт <div>текст внутри
div</div> текст текст
текст внутри
span текст текст

CSS

http://htmlbook.ru/books

Стили (CSS, Cascading Style Sheets, каскадные
таблицы стилей) представляют собой набор
параметров, управляющих видом и положением
элементов веб-страницы.

Стандарты:
CSS1 — 1996 г.
CSS2 — 1998 г.
CSS2.1 — 2011 г. (IE8, Gecko, Webkit, Presto)
CSS3 — ?
CSS4 — ?

http://www.w3.org/TR/REC-CSS1/

Пример css (размещение в
заголовке)

<head><style>
span { color: red;
 background-color: #22f; }
div { border: 1px solid;
 width: 300px;
 float: left; }
</style><body>
тескт <div>текст внутри div</div> текст текст
текст внутри span текст текст
<div>текст внутри div</div> текст текст
текст внутри span текст текст

Размещение CSS в тэге

<p style="text-align: justify;text-indent: 3em;">
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.

Размещение css в файле
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<link rel="stylesheet" href="style1.css">
<body>
тескт <div>текст внутри div</div> текст текст
текст внутри span текст
текст

div {
color: blue;
}

style1.css

Приоритет css

1.!important
2.точность селектора: идентификатор, класс, тэг
3.место размещения стиля: тэг, заголовок, файл

<STYLE TYPE="text/css">
 #x97z { color: blue }
</STYLE>
<P ID=x97z STYLE="color: red">

Типы селекторов CSS

●Имя тэга
●Название класса
●Идентификатор
●Комбинации

Для стилей вне тэгов (заголовок, файл)

селектор {
Описание стилей
}

Примеры селекторов

span {
color: blue;
}
span.yy {
font-weight: bold;
}
#xx {
font-size: 30px;
}
span span {
font-size: 8px;
}

тескт текст текст <span id="xx"
class="yy">текст внутри span1
текст
тексттекст
внутри span2.1 внутри span2

Примеры селекторов

span {
color: blue;
}
span.yy {
font-weight: bold;
}
#xx {
font-size: 30px;
}
span span {
font-size: 8px;
}

тескт текст текст <span id="xx"
class="yy">текст внутри span1
текст
тексттекст
внутри span2.1 внутри span2

Стили

●Текст
●Цвет
●Свойства box-модели
●Специфичные свойства тэгов

Стили текста CSS

font-family — имя фонта
font-style — с наклоном
font-variant — small-caps
font-weight — жирный
font-size — размер
font — все вместе
word-spacing, letter-spacing, text-decoration
vertical-align, text-transform, text-align, text-indent
line-height

P { font: bold italic 150% serif }

Единицы измерения css

em Размер шрифта текущего элемента
ex Высота символа x
px Пиксел
% Процент

in Дюйм (1 дюйм равен 2,54 см)
cm Сантиметр
mm Миллиметр
pt Пункт (1 пункт равен 1/72 дюйма)
pc Пика (1 пика равна 12 пунктам)

Цвета CSS

color
background-color

Название — red, blue...
Номером hex — #FF4458
Номером dec — rgb(255, 0, 0)
Процентами — rgb(100%, 20%, 0%)

Box model

| |
| margin (transparent) |
| _________________________________ |
	border					

		padding				

			content			

Пример box-модели

div {
border: solid 10px;
border-color: green;
margin: 0px 0px
0px 0px;
text-align: justify;}
div.xx {
margin: 10px 20px
30px 40px;
border-color: blue;
padding: 40px 10px
20px 30px;}

<body style="padding:0px;">
<div class="xx">текст внутри
div1 текст внутри div1 текст
внутри div1 текст внутри div1
текст внутри div1
текст внутри div1 текст внутри
div1 текст внутри div1 текст
внутри div1
текст внутри div1 текст внутри
div1 текст внутри div1 </div>
<div>sadjkfh sadfjkhsa fkshf
jksahfjk hsafkjhsa fkahs
fkajh</div>

Пример box-модели

div {
border: solid 10px;
border-color: green;
margin: 0px 0px
0px 0px;
text-align: justify;}
div.xx {
margin: 10px 20px
30px 40px;
border-color: blue;
padding: 40px 10px
20px 30px;}

Позиционирование
<style>
div {
border: solid 2px;
border-color: green;
margin: 10px 10px 10px 10px;
width:30px;
}
#x {
/* float: left;
*/
}

#y {
float: left;
}
#z {
float: left;
}
</style>

<body><div id="x">x</div><div id="y">y</div>
<div id="z">z</div>

Javascript

Краткое введение в Javascript

Javascript это:

1. Интерпретируемый язык. Его интерпретатор обычно встроен в браузер.
2. Основное назначение – определять «динамическое» поведение

страниц при загрузке (формирование страницы перед ее открытием)
и при работе пользователя со страницей (UI элементы).

3. Текст на Javascript может быть вложен в HTML-страницу
непосредственно или находиться в отдельном файле (как CSS).

4. Похож на языки Java и C# синтаксически, но сильно отличается от них
по внутреннему содержанию.

Характеристика Javascript

Некоторые важнейшие характеристики Javascript :

1. Язык объектно-ориентированного программирования. Объекты в языке
имеют «тип», «атрибуты» и «методы»

"John,Jane,Paul,Michael".split(",").length

1. Переменные не имеют заранее заданного типа, то есть в разные
моменты времени могут содержать значения разных типов

var number = 25; number = (number < 0); number = "25";

1. Типы объектов могут быть: number, string, function, object,
undefined. Оператор typeof позволяет «вычислить» тип объекта.

typeof 25 == "number" typeof null == "object"

Характеристика Javascript

Некоторые важнейшие характеристики Javascript :

1. Язык объектно-ориентированного программирования. Объекты в языке
имеют «тип», «атрибуты» и «методы»

"John,Jane,Paul,Michael".split(",").length

1. Переменные не имеют заранее заданного типа, то есть в разные
моменты времени могут содержать значения разных типов

var number = 25; number = (number < 0);
● number = "25";

1. Типы объектов могут быть: number, string, function, object,
undefined. Оператор typeof позволяет «вычислить» тип объекта.

typeof 25 == "number" typeof null == "object"

Основные встроенные типы

Типы, встроенные в язык, это:

Есть набор встроенных «классов», порождающих «объекты»,
различающиеся набором атрибутов и методов. Программисты могут
динамически изменять поведение этих «классов» и создавать свои
собственные. Каждый «класс» является объектом, у которого есть
«прототип», определяющий набор атрибутов и методов у всех вновь
создаваемых объектов этого класса.

- Number : 64-х-разрядные числа с плавающей точкой.

- String : строки с символами в формате Unicode.

- Array : массивы с переменными границами.

- Function : Функции. Каждая функция, кроме того, может служить
конструктором объекта.

- Boolean, Date, Math... : логические значения, даты,…

Некоторые сведения о синтаксисе

Операции такие же, как в Java и C#, но более широко используется
преобразование типов

Описание переменных:

var count = 25,
 msg = 'Сообщение об ошибке';
var nullVar; // получает начальное значение null

+ - * / % ++ -- = += -= *=
/= %= == != > < >= <= && || !

2 + '3' == '23', но 2 + 3 == 5
Многие операторы очень похожи на соответствующие операторы Java и C#,
но могут иметь некоторые отличия в семантике.

for (var i = 0; i < 100; ++i) { ... }

if (x * y < 100) { ... } else { ... }

try { ... } catch (e) { ... } finally { ... }

Объекты, встроенные в браузеры

При программировании можно использовать ряд встроенных объектов.
Основные из них это:

- window : представляет «глобальный контекст» и позволяет работать
 с атрибутами и методами окна.

- document : загруженная страница со своей структурой элементов.

- navigator : объект, представляющий браузер и его свойства.

- location : характеристики текущего URL (порт, хост и т.п.).

- объекты, представляющие элементы различных типов в
 HTML-странице, такие как <body>, <link>, ... и их стили

- события (events), возникающие от действий пользователя, например,
 нажатие кнопки мыши (click), загрузка новой страницы (load) и т.д.

Включение Javascript в HTML-страницу

Фрагменты кода можно включать в заголовок или тело HTML-документа.
Кроме того, можно разместить код в отдельном файле, а в HTML-странице
разместить ссылку на этот файл.

<html>
 <head>
 <script type="text/javascript"> ... </script>
 <script type="text/javascript" src="scripts/myscript1.js"/>
 <head>
 <body>
 <script type="text/javascript"> ... </script>
 <script type="text/javascript" src="scripts/myscript2.js"/>
 </body>
</html>

Два простых примера

Метод document.write используется для непосредственного включения
HTML-текста в содержимое страницы, например, можно сгенерировать
длинный текст в параграфе:

<body>
 <p>

 <script type="text/javascript">
 for (var i = 0; i < 100; ++i) {
 document.write("Hello, world! ");
 }
 </script>
 </p>
</body>

Выявите разницу между исходным
кодом страницы и анализом элементов

Два простых примера (продолжение)

Во втором примере датчик случайных чисел используется для генерации
случайной ссылки (из заданного набора):

 <script type="text/javascript">

 var rand = Math.random();// в диапазоне: [0, 1)
 var numb = Math.floor(rand * 10);
 var image = "images/image" + numb + ".jpg";
 var insert = "<img class=\"floatRight\"

● src=\"" + image + "\" alt=\"Фотографии\"/>";
 document.write(insert);
 </script>

Тип String
Строки заключаются либо в апострофы, либо в двойные кавычки

var slogan = "Don't be evil!";
var image ='';

Операции над строками: + < > == !=

Экранирование и последовательности: \\ \' \" \t \n

"2" + "3" "23"
"10" < "5" true
10 < "5" false

"a" == "A" false
5 == "5" true
5 === "5" false

Атрибут строки: length – длина строки.

"abc".length == 3

5 + "5" "55"

Преобразования типов: String(n) Number(s)

String(10) < "5" == true
Number('3.' + '14') == 3.14

Стандартные методы объектов типа String

"Google".charAt(3) "g"
"Google".indexOf("o") 1
"Google".lastIndexOf("o") 2
"Google".replace("o", "oo") "Gooogle"
"Google".replace(/o/g, "oo") "Goooogle"
"Google".split("o") ["G","","gle"]
"Google".substr(1,3) "oog"
"Google".substring(1,3) "oo"
"Google".toLowerCase() "google"
"Google".toUpperCase() "GOOGLE"

Тип Number
Числа – это 64-х-разрядные двоичные числа с плавающей точкой.

Number.MIN_VALUE
Number.MAX_VALUE
Number.NaN
Number.POSITIVE_INFINITY
Number.NEGATIVE_INFINITY

Операции над числами: + - * / % < > == !=

3.14 % 2 1.14

parseInt("3.14") 3

Функции преобразования: parseInt, parseFloat, Number, toString

5e-324
1.7976931348623157e+308
NaN
Infinity
-Infinity

parseFloat("*3.14") NaN
Number("3.xaxa") NaN
3.14.toString() "3.14"
isNaN(3.14 / 0) false
isNaN(0 / 0) true

Тип Boolean
Стандартные логические значения – true и false. Однако в качестве
условий можно использовать любое значение.

if (2 < 5)

if ('Google могуч и ужасен')
if (25)

if ("")

if (null)
if (0)

Логические условия используются в условных операторах и операторах
циклов.

if (x < y) { z = x; } else { z = y; }

while (x < 100) { x = x * 2; n++; }

do { x = Math.floor(x / 2); n++; } while (x > 0);

for (var y = 0, x = 0; x < 100; ++x) { y += x; }

Тип Date
Объекты типа Date содержат дату в виде числа миллисекунд, прошедших
с 1 января 1970 г. Диапазон от -108 до 108 дней от 1 января 1970 г.

Конструкторы:

var now = new Date(); // сейчас

var gagarin = new Date(1961, 3, 12);
var january1st1970 = new Date(0); // в миллисек

Методы, применимые для работы с датами: getDate, getMonth,
getFullYear, getTime, getTimezoneOffset, setDate, setFullYear,…

function DaysToDate(day, month) {
 var now = new Date(), year = now.getFullYear();
 var bd = new Date(year, month-1, day);
 var fullDay = 24 * 60 * 60 * 1000;

 var diff = Math.ceil((bd - now) / fullDay);
 return diff < 0 ? diff + 365 : diff;
}

var newYear = new Date("January 1, 2015");

Сообщения, выдаваемые в popup-окнах

Три стандартные функции используются для генерации сообщений
в popup-окнах: alert, confirm, prompt.

alert('Вы просрочили платеж!');

confirm('Вы этого хотите?');

var name = prompt('Как Вас зовут?',
 'Никак', 'Вопросик...');

Выдает true или false

Выдает введенную строку или null

События и реакции на них

Имеется большое количество событий, которые можно разделить на
следующие классы:

<p>День независимости России
 <span onclick=
 "alert('Осталось ' +

● DaysToDate(12, 6) + 'дней');">
 12 июня.
</p>

- события от мыши (click, dblclick, mousedown,…);

- события от клавиатуры (keypress, keydown,…);

- события от элементов ввода (focus, submit, select,…);

- события страницы (load, unload, error,…);

Тип Array
Существует несколько способов создания массива:

var holidays = ["1 января", "7 января", "23 февраля"];

Атрибут массива: length – длина массива.

var myArray = new Array();
myArray[2] = new Date(2008,2,23);
myArray[5] = new Date(2008,5,9);
myArray.length ==

var holidays = new Array("1 января", "7 января", "23 февраля");

var holidays = new Array(3);
holidays[0] = "1 января";
holidays[1] = "7 января";
holidays[2] = "23 февраля";

Тип Array (продолжение)
Методы, определенные для работы с массивом:
concat, join, pop, push, shift , unshift, slice

var names = ["Петя", "Вася"];
names = names.concat(["Сережа", "Наташа"],

● ["Оля", "Люба"]);
names == ["Петя", "Вася", "Сережа", "Наташа", "Оля", "Люба"]

var s = names.join(';');
s == "Петя;Вася;Сережа;Наташа;Оля;Люба"

var e = names.pop(); e == "Люба"
names == ["Петя", "Вася", "Сережа", "Наташа", "Оля"]

var l = names.push("Саша"); l == 6
names == ["Петя", "Вася", "Сережа", "Наташа", "Оля", "Саша"]

shift и unshift – точно так же, как pop и push, но с началом массива.

names = names.slice(1, 4);

names == ["Вася", "Сережа", "Наташа", "Оля"]

Тип Array (продолжение)

var names = ["Вася", "Сережа", "Наташа", "Оля"];
names.reverse();
names == ["Оля", "Наташа", "Сережа", "Вася"]
names.sort();

var a = [5, 3, 40, 1, 10, 100].sort();
a == [1, 10, 100, 3, 40, 5]

toString – точно так же, как join(',').

names == ["Вася", "Наташа", "Оля", "Сережа"]

var a = [5, 3, 40, 1, 10, 100].sort(function(a,b)
● {return a-b;});

names.toString() == "Вася,Саша,Таня,Нина,Сережа"

Работа с таймером

var timer = setTimeout(func, timeinterval);

function launchTimer() {
 setTimeout("alert('Амкар – чемпион!');", 2000);
}

Можно создать таймер и определить реакцию на событие от таймера.

func – это функция или строка с кодом; timeinterval – время
в миллисекундах. Таймер срабатывает один раз и запускает функцию.

Теперь можно запустить этот таймер, например, по событию click:

<body>
 <p>Нажми сюда!</p>
</body>

Пока событие еще не случилось, таймер можно остановить:

var timer = setTimeout(func, timeinterval);
clearTimeout(timer);

DOM
When a web page is loaded, the browser creates
a Document Object Model of the page.

Обращение к элементам DOM

document.getElementById
document.getElementsByClassName
document.getElementsByTagName

document.getElementById('xxx').innerHTML=
'текст внутри тэга с идентификатором ххх'

Создание элементов DOM

 var btn = document.createElement("i");
 var t = document.createTextNode("bams");
 btn.appendChild(t);

document.createElement
document.createAttribute
document.createTextNode
element.appendChild
element.setAttribute

document.getElementsByTagName("INPUT")[0].setAttribute("type","button");

jQuery

JavaScript-фреймворки
Сферы использования
● обработки данных на стороне клиента
● создания визуальных эффектов
● «обогащения» интерфейса
● создания клиентской части web-приложений

Популярные JavaScript-фреймворки
● prototype
● jQuery
● dojo

Возможности jQuery

• переход по дереву DOM, включая
поддержку XPath как плагина,

• события,

• визуальные эффекты,

• AJAX-дополнения,

• JavaScript-плагины

Подключение jQuery

• jQuery включается в веб-страницу как один
внешний JavaScript-файл:

 <script type="text/javascript"
 src="путь/к/jQuery.js"></script>

• Есть постоянно действующая и обновляемая
ссылка
http://ajax.googleapis.com/ajax/lib
s/jquery/1.11.1/jquery.min.js

Вызовы jQuery

$("div.test").add("p.quote").addClass("blue").slideDown("slow");

Выбирает все элементы <div> с классом test, а
также все элементы <p> с классом quote, и затем
добавляет им всем класс blue и визуально плавно
спускает вниз.

jq0_blue_js.html jq0_blue.html

Селекторы

• Вызов $(selector) или jQuery(selector)
возвращает специальный объект,
содержащий массив элементов DOM.

• Селекторы в jQuery базируются на CSS
селекторах, а так же поддерживают
XPath.

Примеры селекторов

$('#sidebar') – выбор элемента с id = sidebar

$('.post') – выбор элементов с class = post

$('div#sidebar') – выбор элемента div с id =
sidebar

$('div.post') – выбор элементов div с class = post

$('div span') – выбор всех span элементов в
элементах div

Примеры селекторов

$('div < span') – выбор всех span элементов в
элементах div, где span является прямым
потомком div

$('div, span') – выбор всех div и span элементов

$('span + img') – выбор всех img элементов перед
которыми идут span элементы

$('span ~ img') – выбор всех img элементов после
первого элемента span

Примеры селекторов

$('#banner').prev() – выбор предыдущего
элемента от найденного

$('#banner').next() – выбор следующего элемента
от найденного

$('*') – выбор всех элементов

$('p < *') – выбор всех потомков элементов p

Примеры селекторов

$('#banner').prev() – выбор предыдущего
элемента от найденного

$('#banner').next() – выбор следующего элемента
от найденного

$('*') – выбор всех элементов

$('p < *') – выбор всех потомков элементов p

Селекторы с фильтрами

$('div:first') – выбираем первый div в DOMе

$('div:not(.red)') – выбираем div'ы у которых
нет класса red

$('div:eq(N)') – выбираем div, идущий под
номером N в DOMe

$(':header') – выбор заголовков h1, h2, h3 и
т.д.

$('div:hidden') – выбираем скрытые div

Селекторы с фильтрами

$('div.red').filter('.bold') – выбираем div'ы
которые содержат класс red и класс bold

$("div[id]") – выбор всех div с атрибутом id

$("div[title='my']") – выбор всех div с
атрибутом title=my

$("div[title*='my']") – выбор всех div с
атрибутом title содержащим my

Селекторы для форм

$(":text") – выбор всех input элементов с
типом =text

$("input:enabled") – выбор всех включенных
элементов input

$("input:checked") – выбор всех отмеченных
чекбоксов

$("div[name=city]:visible:has(p)") – выбор
видимого div'a с именем city, который
содержит тег p

Работа с DOM

• Создание элементов jq1.html

 $("<p>Hello!</p>");

• Вставка в DOM

$("<p>Привет!
</p>").insertAfter("#followMe");

– append, appendTo, prepend, prependTo
– after, before, insertAfter, insertBefore
– wrapAll, wrapInner

Создание элементов

$("<div/>",

 { id: "foo",

 css: { height: "50px", width: "50px",

 color: "blue", backgroundColor: "#ccc"

 },

 click: function() {

 $(this).css("backgroundColor", "red");

 }

}).appendTo("body");

Манипуляции с наборами

• Манипуляции:

add()

filter()

not()

eq(N)

first(), last()

…

• Пример:

$(‘p’).add(‘<div>Привет!</div>’)

События

Назначение обработчиков:
• click(fn)

• hover(fnIn, fnOut)

• change(fn)
• focus(fn), blur(fn)

• …

Генерация событий:
• click()

Примеры

• выдвижная панель jq2.html

• связанная анимация jq3.html

XML
eXtensible Markup Language

• Язык навигации внутри XML-документа (XPath)

• Пространства имён (Namespaces)

• Язык трансформаций (XSLT)

XPath — навигация внутри
документа

Основные понятия

• набор узлов (nodeset)

• Выражение на XPath (путь)

• описывает набор узлов в документе

• элементы

• атрибуты

• корень документа (корневой элемент)

• абсолютный / относительный путь

• родитель-дети

• сиблинги (узлы одного уровня)

• предки-потомки

XPath — навигация внутри
документа

• путь от корня (абсолютный) начинается с /
• фрагмент пути между двумя / — шаг по дереву

• (по умолчанию — от корня к листьям)

• в результат входят все узлы, подходящие под описанный
путь

• /booklist ; /booklist/book/author

• путь без / (относительный) считается не от корня, а от
текущей позиции

• book/author

• // любое количество шагов
• //book ; //author ; /booklist//author
• @ атрибут

• //book/@lang

XPath — навигация внутри
документа

• Выражения с условием (предикатом)

• условие на порядковый номер узла в дереве

• book[2] ; book[last()] ; book[position()<3]

• условие на значение дочерних элементов

• (путь отсчитывается от текущей позиции)

• book[city=“Москва”]

• book[price>250]

• условие на значение атрибутов

• //book[@lang=“rus”]/title

• Условие […] применяется к тому узлу, после которого
стоит

• book[1]/author vs. book/author[1]

Пространства имён
(Namespaces)

• Представьте, что в одном XML-документе
определены такие элементы:

name, age, company, position

• А в другом такие:

name, border, size, position

Что случится, если нам понадобится объединить
документы этих типов?

Парсер запутается в элементах name и position.

К какому типу их отнести?

Пространства имён
(Namespaces)

• Пространство имён позволяет разделять
наборы элементов, относящихся к разным
объектам

• Для этого к названию элемента добавляется
префикс

pers:name, pers:age, pers:company,
pers:position

image:name, image:border, image:size,
image:position

• У каждого имени может быть только один
префикс. Он отделяется двоеточием

Пространства имён
(Namespaces)

• Пространства имён, используемые в документе,
должны быть объявлены

• объявление делается либо в корневом элементе,
либо в элементах, где используется данный
префикс

• каждому префиксу ставится в соответствие
гиперссылка (реальная или условная)

<root
xmlns:pers="http://www.philol.msu.ru/people"

xmlns:image="http://www.philol.msu.ru/photo">

Преобразования XML-данных
(XSLT)

• Как мы помним, XML ничего сам не делает. Его
задача — описывать структуру данных

• Чтобы с этими данными что-то сделать,
используются специальные средства

• XSL — eXtensible Stylesheet Language
– XSLT: XSL Transformations выполняет

преобразования данных

– XSL-FO: XSL Formatting Objects форматирует
данные для печати

XSLT процессор

Реализации XSLT
процессоров

• Sablotron

• Saxon

• Xalan

• Microsoft XML Core Services (MSXML

• Браузеры

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="my-
style.xsl"?>

Назначение XSLT

• Что умеет делать XSLT?

• Отбирать (фильтровать) определённые данные из целого
документа

• Упорядочивать данные независимо от исходного порядка

• Менять исходную структуру данных

• (до неузнаваемости)

• Преобразовывать XML

• в другой XML

• в правильный HTML

• в другие текстовые форматы

Язык XSLT

• В отличие от многих языков
программирования (BASIC, Pascal, C,
…), XSL — не императивный язык, а
декларативный.

• Программа на XSL (transformation, она
же stylesheet) сообщает не что нужно
делать (последовательность операций),

а что должно получиться.

Пространство имен XSLT

Стандартный XSLT относится к
пространству имен с URI:
http://www.w3.org/1999/XSL/Transform

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Trans
form">

Общепринятым считается префикс «xsl:»
<xsl:template match="/">

Вводный пример XSLT
<?xml version="1.0" encoding="UTF-8"?>

• <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• <xsl:output method="html"/>

•

• <xsl:template match="/">

• <table>
• <xsl:apply-templates/>

• </table>

• </xsl:template>

•

• <xsl:template match="content">

• <tr>

• <td>

• <xsl:value-of select="domain/text()"/>

• </td>

• <td>

• <xsl:value-of select="@id"/>
• </td>

• </tr>
• </xsl:template>

•

• </xsl:stylesheet>

•

• уч01

Форсирующая
трансформация

 Форсирующая обработка (Push Processing) —
обработка, управляемая логикой исходного
документа

Основные инструкции

 apply-templates

 template match="образец"

 Образец (pattern) — это информация, которая
указывается в шаблоне для того, чтобы
определить, соответствует ли шаблон выбранному
узлу.

http://www.w3.org/1999/XSL/Transform

Извлекающая трансформация

Извлекающая обработка (Pull Processing)
—обработка, управляемая логикой таблицы
стилей

Основные конструкции

for-each select="XPath-выражение"

call-template

Условные конструкции

<xsl:if test="Условие">
инструкции

</xsl:if>

<xsl:choose>
<xsl:when test="Условие1">

инструкции
</xsl:when>
<xsl:when test="Условие2">

инструкции
</xsl:when>
<xsl:otherwise>

инструкции
</xsl:otherwise>

</xsl:choose>

Переменные и параметры

<xsl:param name =
"имя">значение</xsl:param>

<xsl:variable name = "имя" select =
"XPath-выражение"/>

<xsl:variable name = “stud" select =
«Студенты/Студент[1]/@ФИО"/>

<xsl:value-of select="$stud"/>

HTML, XML, XHTML

XPATH

XSLT

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46
	Страница 47
	Страница 48
	Страница 49
	Страница 50
	Страница 51
	Страница 52
	Страница 53
	Страница 54
	Страница 55
	Страница 56
	Страница 57
	Страница 58
	Страница 59
	Страница 60
	Страница 61
	Страница 62
	Страница 63
	Страница 64
	Страница 65
	Страница 66
	Страница 67
	Страница 68
	Страница 69
	Страница 70
	Страница 71
	Страница 72
	Страница 73
	Страница 74
	Страница 75
	Страница 76
	Страница 77
	Страница 78
	Страница 79
	Страница 80
	Страница 81
	Страница 82
	Страница 83
	Страница 84
	Страница 85
	Страница 86
	Страница 87
	Страница 88
	Страница 89
	Страница 90
	Страница 91
	Страница 92
	Страница 93
	Страница 94
	Страница 95
	Страница 96
	Страница 97
	Страница 98
	Страница 99
	Страница 100
	Страница 101
	Страница 102
	Страница 103
	Страница 104
	Страница 105
	Страница 106
	Страница 107
	Страница 108
	Страница 109
	Страница 110
	Страница 111

